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SIMULATION OF A COMBINED-CYCLE ENGINE

Abstract

A FORTRAN computer program has been developed to simulate the

performance of combined-cycle engines. These engines combine features

of both gas turbine and reciprocating engines. The computer program described

and documented in this report can simulate both design point and off-design

operation. Widely varying engine configurations can be evaluated for

their power, performance and efficiency as well as the influence of altitude

and air speed. Although the program was developed to simulate aircraft

engines, it can be used with equal success for stationary and automotive

applications.
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SIMULATIONOF A COMBINED-CYCLEENGINE

I Introduction

As part of a project to develop a high-efficiency engine for use in
helicopters, the U.S. Army Aviation Systems Commandauthorized the
development of a simulation capability for estimating the off-design
performance of combined-cycle engines. These are engines that have features
of both gas turbine and reciprocating engines. This document is the final
report for the project to develop this simulation capability.

During a SummerFaculty Fellowship in 1988, the author developed a
computer program for simulating two-stroke diesel engines. This program was
documented in reference [i]. While this program allowed prediction of
diesel engine performance it required knowledge of the intake air supply
pressure and temperature as well as the exhaust back pressure. This
information can be specified at a design point operating condition but at
an off-design condition, it is usually unknown. In order to predict
off-design performance, it is necessary to incorporate the characteristics
of the compressors and turbines used to supply the air to the engine.

The Navy-NASAEngine Program (NNEPEQ)is an existing computer program that
allows the off-design behavior of turbomachinery to be predicted and also
solves the resulting matching problem [2,3]. The principle objective of the
project described in this report was to combine the two-stroke diesel engine
simulation program with NNEPEQto obtain a combined-cycle engine simulation
program.

This report is suitable as a user's manual for the combined-cycle engine
simulation program. Since the two programs that comprise the simulation are
documentedelsewhere, details of these programs will not be provided. Only
those features of the combined program that are new, or not discussed
elsewhere, will be documentedhere.

The proposal for this project stated that in addition to the integration
of the two simulation programs, other improvements would be made. These
include upgrading the air scavenging model in the diesel program,
investigating alternative compressor maps in NNEPEQ,incorporating second law
analysis into the diesel program and allowing the use of crankshaft offset
with opposed piston engines. While all of these features are addressed in
this report, only the improved scavenging model has been incorporated into
the combined cycle program. The other features are provided in special
purpose programs. This requirement cameabout because of the need to
dramatically reduce the execution time of the diesel simulation program.
The version of the program described in reference [i] requires about 2-8
minutes of CPUtime on a VAX11/785. Since NNEPEQwill execute this
program approximately i00 times for each operating condition and a typical
run of NNEPEQinvolves one design point run and 8-12 off-design point
conditions, it is obvious that CPUtimes had to be reduced. Program
modifications were madethat reduced the execution time by a factor of 20 with
only minimal changes in output. The combined program is currently being run
on a DEC3100 workstation and requires about 3 minutes for each operating
condition.

This report will describe the improvementsmade to the diesel simulation,
especially the air scavenging model. Then the features of the combined program



will be presented as well as the input and output from the program. These
features will be illustrated with two sample cases. Following the sections
on the combined-cycle engine simulation program, the other aspects of the
contract work statement will be discussed. An appendix is provided describing
a computer program for doing second law calculations. Another appendix shows
how experimental data for a small centrifugal compressor was entered into the
program and comparedwith the standard mapsused by the program. Finally, the
last appendix contains a subroutine for calculating diesel engine cylinder
volumes for opposed piston engines with crankshaft phase offset.



2 Structure of the Combined-Cycle Simulation. Computer Program

Figure 2.1 shows a schematic of the combined-cycle engine simulation
computer program. The main program, called CCE, is very similar to the main
program in NNEPEQdescribed in references [2,3]. However, it contains the
call to a subroutine INPUTI that reads the file containing the specifications
of the diesel engine. The block of subroutines identified as NNEPLIBincludes
all the subroutines originally associated with NNEPEQ.Only a few have been
modified to allow the simulation of a combined-cycle engine. CCEcan still be
run as a gas turbine simulation program and retains all the features of NNEPEQ.

The diesel portion of the simulation has been incorporated into the gas
turbine simulation as a burner. The subroutine DBURNRfrom NNEPEQwas modified
so that if a certain parameter is non-zero, the program flow branches out of
DBURNRand calls the DIESELsubroutine.

There is a mis-match between the requirements of the turbomachinery
portion of CCEand the diesel program. CCEprovides each of the elements
of the gas turbine engine with an incoming pressure, temperature and mass
flow rate. It then calculates an exit pressure that corresponds to these
conditions. However, the diesel program expects to receive an incoming
pressure and temperature and an exit pressure. It then calculates the mass
flow rate for these conditions. Due to this problem it was necessary to
develop an interface subroutine that matches the information supplied by CCE
to that required by the diesel program. This interfacing subroutine is
called DIESELand it calls the diesel simulation program DSL2with estimated
values of exhaust back pressure. It iteratively varies this pressure until
the mass flow rate through the diesel matches that required by CCE.

The block of subroutines identified as ELIB includes the subroutines
required by DSL2. These subroutines are separate from and do not depend on
those present in NNEPLIB.
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Figure 2.1 Structure of the Combined-Cycle Engine (CCE) Simulation Program



3 Modifications to the Diesel Simulation Program

3.1 Air Scavenging Models

The original version of the diesel simulation computer program
described in reference [i], has a very basic scavenging model that is not
flexible enough to accomodatedifferences in the scavenging characteristics of
various engines. Oneof the objectives of this project was to implement a
more sophisticated scavenging model that would provide more accurate
predictions of air flow requirements in two-stroke engines.

Three simple models for scavenging can be developed from the limiting
cases corresponding to phenomenain two-stroke engines. One case, called
"perfect scavenging," assumesthe incoming air is separated from the exhaust
gases by a membranethat prevents mixing. The incoming air pushes the exhaust
out ahead of it and when enough air has been added to fill the cylinder, the
exhaust gases have been completely expelled. Obviously, this is an ideal case
and is never accomplished in a real engine.

The second limiting case is "perfect mixing." In this case, the incoming
air is assumedto mix instantaneously with the product gases in the cylinder
as it enters the cylinder. Whenthe exhaust process begins most of the
expelled gases are combustion products but as the process continues, an
increasing fraction is fresh charge.

The final case corresponds to complete "short circuiting." This means
that the air entering through the intake ports passes directly to the exhaust
ports without expelling any exhaust products with it. This would be a highly
undesirable form of scavenging since no fresh charge is retained for the
next engine cycle.

The original engine simulation program uses a scavenging model that
assumesperfect mixing. While this model will accurately predict power
and efficiency in diesel engines, it underpredicts the air flow requirements
of the engine. Most two-stroke engines produced today have scavenging
characteristics somewherebetween perfect mixing and perfect scavenging. A
scavenging model that takes advantage of this fact is the "mixing-displacement
scavenging" model developed by Benson and Brandham[4]. The details of the
model are described below.

3.2 Mixing-Displacement Scavenging Model

This model assumesthat the cylinder is divided into two zones. One
zone is called the mixing zone and the other the displacement zone. The ratio
of the initial volume of the displacement zone to the total cylinder volume is
called the displacement factor. At the point where both the intake and
exhaust ports are open simultaneously, the start of the scavenging period, the
exhaust gases leave the cylinder from the displacement zone following the
commonlyused rule based on isentropic flow of ideal gases through a reduced
area section due to a pressure difference. Non-ideal behavior is incorporated
with a discharge coefficient. Incoming air flows through the intake port
following a similar relationship and enters the mixing zone where it is assumed
to mix perfectly with the contents of that zone. The scavenging process
continues until the contents of the displacement zone are completely exhausted
and the mixing zone completely fills the cylinder. At this point, the products

5



leaving the cylinder are drawn from the mixing zone until the exhaust port
closes. This model is a combination of a perfect mixing and perfect
scavenging model. The displacement factor determines the relative weighting
between the two models. This factor is chosen to provide scavenging
characteristics that match experimental data, if available. The program
currently uses a value of 0.55 for the displacement factor as this gives
results typical of current production engines.

The diesel simulation program uses a single zone combustion model. This
model is used up to the point where the intake port opens and then the single
zone is split into the two zones described above. Under almost all conditions,
the model reverts to a single zone model during the scavenging process because
the displacement zone is entirely exhausted. It is conceivable that under
very high speed conditions or when the pressure drop across the engine is very
low, the displacement zone might not be entirely exhausted before the exhaust
port closes. In this case, the two zones are instantaneously mixed at the
point of exhaust port closure and the calculation continues with the single
zone model.

Use of the mixing-displacement scavenging model requires no input from
the user. It is automatically used when the program is used to simulate a
two-stroke engine.

3.3 Change in Gas Property Routine

The diesel simulation routine described in reference [I] assumesthat the
contents of the engine cylinder are equilibrium combustion products at all
times. The computer program used a subroutine, PERX, that was based on the
subroutine PERdeveloped by Olikara and Borman[5]. However, in a time study
of the diesel simulation it was determined that the program was spending about
80%of its time calculating properties. To reduce the amount of time spent in
property evaluation a new property routine was developed that assumes the
products consist of oxygen, nitrogen, carbon dioxide and water vapor
under lean conditions and nitrogen, carbon dioxide, carbon monoxide, hydrogen
and water vapor under rich conditions. This change in property routine
resulted in a reduction in CPUtime from 465 seconds to 86 seconds on a
VAX 11/785.

3.4 Change in Differential Equation Integrato#

The final modification to the program was to change the differential
equation integrator used to solve the time-based equations for pressure,
temperature, etc. in the cylinder. The original version of the program used
DVERK,a subroutine from the commercial International Mathematical Subroutine
Library (IMSL). This program uses the Runga-Kutta numerical procedure which
is highly accurate but not very efficient. This subroutine also has the
disadvantage that the program can only be run on a computer that is licensed
to use the IMSL programs. To eliminate these problems, the subroutine LSODE
was substituted for DVERK. This subroutine'is publicly available so it can
be easily transported to other computers. In addition, it uses an implicit

numerical procedure that is very efficient [6]. CPU time was reduced from 86 s

ii seconds using this routine. Accuracy was such that no significant

difference _could be detected between results obtained with this routine and

those derived using the IMSL program.



4 Inputs to the CombinedCycle Engine Simulation Program

Input to the combined-cycle engine simulation program is provided by two
data sets. The first data set corresponds very closely to the NAMELISTdata
input file used by NNEPEQand completely characterizes the turbomachinery
associated with the engine. The only modifications to this file are that if a
diesel engine is included in the engine design, the engine fueling rate and
speed are input through this data set. A conventional gas turbine engine data
set can be provided to the program and it will run normally and provide the
sameresults as NNEPEQ.

The second input data set provides the specifications of the diesel
engine. This data set is a slightly modified version of the data set used by
the original two-stroke diesel engine program [i].

The turbomachinery data set is read from a file named"TURBO.INP." The
diesel data set is read from a file named"DSL.INP". A third data file
contains the turbomachinery maps. A default set of maps is provided with
NNEPEQand they were used for the example cases described later. The map file
is read from logical unit 12. This meansthat an ASSIGNMENTstatement must be
used to identify the actual data file nameas unit 12.

The turbomachinery input data file is relatively complex and provides a
great deal of flexibility in specifying engine configuration and component
specifications. Since it is essentially identical to the input data file used
by NNEPEQ,and is well-documented elsewhere [2,3], only the general features
of the input file will be presented here. This report assumesthe reader has
a working knowledge of the NNEPEQprogram.

The first line in the turbomachinery NAMELISTis a title for the cases
and can be up to 60 characters "in length. Following this line is the NAMELIST
data. The following is an abbreviated list of variable definitions. The
NNEPEQmanual should be consulted for the complete list.

NCOMP= The total number of components including controls that will be
configured.

TABLES= TRUEif mapsare used, FALSEif not. (Default is TRUE)
PUNT = Set PUNT= TRUEto use last good point as set of first guesses for

next point. It is advisable to always have PUNT= TRUE. (Default
is TRUE)

LONG = Control for printing a history of the convergence process. It is
advisable to have LONG= TRUEfor newproblems. (DefauLt is TRUE)

The first N_MELISTread process inputs these variables and then, if

TABLES = TRUE, the code will read in the maps. Now the program is ready to

read in the engine configuration data.

Each type of component has a different set of input variables. However,

the form of the input is the same for all components. For all components

except controls the input data is read in the following form.

KONFIG(I,N)=M,JMI,JM2,JPI,TP2,

SPEC(I,N)=VI,V2,...,VI5

where N is the component number



M is a number corresponding to the type of componentwhere
l = inlet
2 = duct or burner
3 = gas generator
4 = compressor
5 = turbine
6 = heat exchanger
7 = splitter
8 = mixer
9 = nozzle

i0 = load
ii = shaft

12 = control

JMI is the primary upstream airflow station number for flow components

or the first component hooked onto a shaft

7M2 is the secondary upstream station number, or the second component

hooked onto a shaft

JPI is the primary downstream station number, or the third component

hooked onto a shaft

7P2 is the secondary downstream station number, or the fourth component
hooked onto a shaft

The SPEC array is used to define the characteristics of the component

identified in the KONFIG statement. The SPEC statement could specify as many

as 15 different parameters but most components do not use all 15. Table 4.1

is extracted from reference [3] and defines the values of the SPEC array for

each component.

Table 4.1 Definitions of the Configuration Variables

Device Type i: Inlet

SPEC(I,N)=Inlet weight flow, ib/sec

SPEC(2,N)=Free stream temperature, R

SPEC(3,N)=Free stream pressure, psia

SPEC(4,N)=Inlet drag table reference number, if blank computed

SPEC(5,N)=Mach number at inlet

SPEC(6,N)=Inlet recovery factor, constant or table reference number

If =O, Mil spec is used

SPEC(7,N)=Maximum permitted flow if table specified in SPEC(6,N)

SPEC(8,N)=Scale factor on flow if table specified in SPEC(6,N)

SPEC(9,N)=Altitude, feet, used only if SPEC(2,N), SPEC(3,N) =0

SPEC(10,N)=Fuel/air ratio at inlet, usually =0

SPEC(II,N)=If nonzero, SPEC(9,N) is geopotential altitude

SPEC(12,N)=Temperature change to be added to SPEC(2,N), usually zero

SPEC(13,N)=Blank

SPEC(14,N)=Corrected flow at inlet entrance (if specified, will

override SPEC(I,N))

SPEC(lS,N)=Corrected flow at inlet exit (if specified, will override

SPEC(I,N))

Device Type 2: Duct (or Diesel Engine)

SPEC(l,N)=Pressure drop/inlet pressure or table reference number

SPEC(2,N)=Optional, design duct Mach number



SPEC(3,N)=0 for duct, if nonzero then program assumesthis device
is a diesel engine and this is the mass of fuel injected per
cylinder per cycle

SPEC(4,N)=If SPEC(3,N)=0, then burner outlet temperature if positive
simple duct if zero
fuel/oxidizer ratio if negative

If SPEC(3,N).GT.0, then equal to diesel engine speed
SPEC(5,N)=Burner efficiency or table reference number
SPEC(6,N)=Fuel heating value or table reference number
SPEC(7,N)=Cross sectional area of duct or burner, sq inches
SPEC(8,N)=Ratio of inlet entrance bleed flow to total bleed available
SPEC(9,N)=Exit bleed/total flow
SPEC(10,N)=Fraction of air not heated

Device Type 3: Gas Generator
SPEC(l,N)=Output temperature, R
SPEC(2,N)=Fuel/oxidant weight ratio
SPEC(3,N)=Generator pressure, psia
SPEC(4,N)=Fuel flow rate, Ib/sec
SPEC(5,N)=Oxidant flow rate, ib/sec
Not all of these SPEC'scan be specified simultaneously.
1. SPEC(1)and SPEC(4)
2. SPEC(1)and SPEC(5)
3. SPEC(2) and SPEC(4)
4. SPEC(2) and SPEC(5)
5. SPEC(4) and SPEC(5)

The options are

Device Type 4: Compressor
SPEC(I N)=R value used to read tables
SPEC(2N)=Compressorbleed flow/total flow
SPEC(3N)=Scale factor for corrected speed
SPEC(4N)=Table reference number for corrected speed
SPEC(5N)=Scale factor for corrected flow
SPEC(6N)=Table reference number for corrected flow
SPEC(7N)=Scale factor for efficiency
SPEC(8N)=Table reference numberfor efficiency
SPEC(9N)=Scale factor on input pressure ratio, SPEC(13,N)
SPEC(10,N)=Third dimension argument value on map (variable geometry)
SPEC(ll,N)=Fractional bleed horsepower loss due to interstage bleed

=0 meansall bleed after full compression
SPEC(12,N)=Desired adiabatic efficiency at design point
SPEC(13,N)=Desired pressure ratio at design point R value and

corrected speed
SPEC(14,N)=Corrected speed for design point on maps

Device Type 5: Turbine
SPEC(l,N)=Pressure ratio at design point on maps
SPEC(2,N)=Total bleed in/Total bleed available
SPEC(3,N)=Scale factor for corrected speed, usually i
SPEC(4,N)=Table reference number for corrected flow
SPEC(5,N)=Scale factor for corrected flow
SPEC(6,N)=Table reference number for turbine adiabatic efficiency
SPEC(7,N)=Scale factor to get design point efficiency at design

point on map
SPEC(8,N)=Scale factor calculated to get desired pressure ratio



on map
SPEC(9,_)=Turbine bleed flow at entrance/bleed flow

SPEC(10,N)=ThLrd dimension argument value on map

SPEC(II,N)=DesLred efficiency at design point

SPEC(12,N)=Corrected speed at design point on map

SPEC(13,N)=Turbine horsepower spilt (usually =i)

Device Type 6: Heat Exchanger

SPEC(l,N)=Pressure Drop/Inlet pressure for main flow

SPEC(2,N)=Pressure drop/In[et pressure for secondary flow

SPEC(3,N)=Temperature rise for main flow (main flow must be heated)

SPEC(4,N)=Effectiveness

SPEC(5,N)=Scale factor on effectiveness

Device Type 7: Splitter

SPEC(I,N)=Bypass ratio (Bypass flow/main flow)

SPEC(2,N)=Pressure drop/inlet pressure for main stream

SPEC(3,N)=Pressure drop/inlet pressure for bypass stream

Device Type 8: Mixer

SPEC(I,N)=Inlet area of main flow calculated at design point

SPEC(2,N)=Inlet area of secondary flow calculated at design point,

if SPEC(7,N)=2, then throat area

SPEC(3,N)=Total to static pressure ratio at main flow inlet if greater

than i, if less than 1 =Mach number at design point

SPEC(4,N)=velocity coefficient on mixed flow velocity, if SPEC(7,N)=2

then momentum coefficient for ejector primary (l=ideal, less

then l=less than ideal)

SPEC(5,N)=If =i total inlet area is held fixed as second area varies,

if =0, independent areas

SPEC(6,N)=This parameter can have a value of 0 or i. If =0 the definition

of SPEC(3,N) is as described above. If =I then SPEC(3,N) is the

minimum total to static pressure ratio or the minimum Mach

number of either stream

SPEC(7,N)=If =0 then normal mixer, =I supersonic mixer, =2 ejector

To use SPEC(7,N)=2, the user should consult the NNEPEQ manual

for additional input requirements

Device Type 9: Nozzle

SPEC(I,N)=Flow area, sq inches, exit for converging, throat for C-D

SPEC(2,N)=FLow coefficient or table reference number

SPEC(3,N)=Blank

SPEC(4,N)=Nozzle exit static pressure or component no. (see SPEC(9,N))

SPEC(5,N)=Cv, velocity coefficient or table'reference number

SPEC(6,N)=0 if converging, =i if C-D

SPEC(7,N)=Area switch, =0 to fix area to input value, =i to vary area

to match flow required

SPEC(8,N)=BIank

SPEC(9,N)=If SPEC(4,N)=0, set SPEC(9,N) to component number of inlet

Device Type i0: Load

SPEC(I,N)=Ioad horsepower (negative) or table reference number

SPEC(2,N)=propeller efficiency or =0

SPEC(3,N)=thrust/SHP at SLS

i0



Device Type 11: Shaft
SPEC(I N)=Actual shaft RPM
SPEC(2,
SPEC(3
SPEC(4,
SPEC(5
SPEC(6
SPEC(7
SPEC(8
SPEC(9

N)=Gear ratio, first componenton shaft.
N)=Gear ratio, second componenton shaft.
N)=Gear ratio, third componenton shaft.
N)=Gear ratio, fourth componenton shaft.

Componentrpm/shaft rpm
Componentrpm/shaft rpm

Componentrpm/shaft rpm
Componentrpm/shaft rpm

N)=Mechanical efficiency of first component
N)=Mechanical efficiency of second component
N)=Mechanical efficiency of third component
N)=Mechanical efficiency of fourth component

Device Type 12: Control
SPCNTL(I,N)=Mfor the SPEC(M,N)of device N which is to be varied
SPCNTL(2,N)=Nfor the componentnumberof the component being varied
SPCNTL(3,N)=I00 if a station property is to be varied

=200 if a DATOUTis to be varied
=400 if a performance property is to be varied

SPCNTL(4,N)=Numberof station property to be varied
=i weight flow
=2 total pressure
=3 total temperature
=4 fuel to air ratio
=5 corrected flow
=6 Machnumber
=7 static pressure
=8 interface corrected flow error

or DATOUT(L) (see output section for values of L for

each component)

or performance property to be varied

=i total engine airflow

=2 gross jet thrust

=3 fuel flow

=4 net jet thrust

=5 TSFC

=6 net thrust/airflow

=7 total inlet drag
=8 total brake shaft HP

=9 net thrust with installation drags

=10 net SFC

=Ii inlet drag (lip and spillage)

=12 boattail drag

SPCNTL(5,N)=flow station number if SPCNTL(3,N)=IO0

=component number if SPCNTL(3,N)=200

=0 if SPCNTL(3,N)=400

SPCNTL(6,N)=value to be achieved

SPCNTL(7,N)=tolerance as fraction of value, if =i default value of

0.001 will be used, if =0 control is turned off

SPCNTL(8,N)=minimum allowable value, if zero ignored

SPCNTL(9,N)=maximum allowable value, if zero ignored

Figure 4.1 shows a sample turbomachinery input file. This is the file

that corresponds to the V-6 Compound-Cycle engine discussed later in the first

sample case. The only difference between this file and a conventional

ii



TEST CASE: COMBINEDCYCLEENGINE
&D ICEC=O,NCODE=I,LONG=T,NMODES=I,&END
QD MODE=i,

KONFIG(I,I)=I,I,O,2,0,SPEC(I,I)=7.8,4iO,I,SIO,O,O,

KONFIG(I,2)=4,2,0,3,0,SPEC(I,2)=I.8,0,1,1001,1,1002,I,IO03,1,

2.,0,.85,1.05,1,

KONFiG(I,3)=7,3,0,12,4,SPEC(I,3)=0.455,0,O,

KONFIG(I,4)=4,4,0,5,0,SPEC(I,4)=I.3,O,I,IO04,.5,1005,1,1006,1,

0,0,.79,9.9192,1,

KONFIG(I,5)=6,12,5,13,6,SPEC(I,5)=.02,.02,250.,O.4,1,

,6)=2,6,0,7,0,SPEC(I,6)=0.I,0,0.000145,6122.,1,18300.,

,6)=2 l

,7)=5 ,",0,8,0 ,SPEC(1,7)=4.3,0,1 ,i007,1,1008,1 ,i ,

5000 i,

8)=2 8,0,9,0,9PEC(1,8)=0,0,0,0,.99,18300.,
8)=2 1

9)=5 9,0,10,0,SPEC(1,9)=1.8,0,1,I009,1,I010,I,I,

5000 i,

I0)=9,10,0,II,0,SPEC(I,I0)=0.,!,0.,0.,.9850,I.,0.,

KONFIG(I

FARRAY(I

KONFIG(!

0,I,.845
KONFIG(I

FARRAY(I

KONFIG(I

0,I,.848
KONFIG(I

0.,i.,
KONFIG(I

0.,i.,

KONFIG(!

KONFIG(I

KONFIG(!

KONFIG(I

KONFIG(I

KONF!G(I

KONFiG(!

KONFI G( 1

KONFI G( 1

KONFI G( 1

KONFIG(I

KONFI G (1

&END

,I:-')=9,13,0,14,0,SPEC(1,12)=0,1,0,0.,0.9850,I.,I.,

,13)=ii

,i4)=li

,15)=i0

,16)=I2,SPCNTL

17)=12,SPCNTLI

18)=I2,SPCNTL_

20)=I2,SPCNTL,

2I)=I2,SPCNTLI

22)=I2,SPCNTLI

23)=I2,SPCNTLI

24)=I2,SPCNTL,

26)=12,SPCNTL,

,2,4,7,0,SPEC(!,I3)=gel.

,9,15,0,O,SPEC(I,14)=gml.

,O,O,O,O,SPEC(I,15)=-200,O,O,

1,16)=1,9,100,8,10,0,0,

l 17)=1,7,100,8,9,0,0,

i 18)=1,4,100,8,7,0,0,

i 20)=1,2,100,8,4,0,0,

l 21)=1,1,100,8,2,0,0,

! 22)=1,13,200,8,13,0,0,

i 23)=I,15,200,8,14,0,0,

I 24)=3,5,200,3,5,0,1,

1_26)=i0,2,200,5,2,4.0,0,

&D SPEC(9,16)=I,SPEC(9,17)=I,SPEC(9,18)=I,

SPEC(9,20)=l,SPEC(9,21)=l,SPEC(9,22)=l,SPEC(9,23)=l,
SPEC(9,26)=1, &END
&D SPEC

&D SPEC
&D SPEC
&D SPEC
&D SPEC
&D SPECI
&D SPEC[
&D SPEC_
&D SPEC
&D SPECI
&D SPECI

3,.6) =0.00012 &END
3,6)=0
3,6)=0
3 g)=O
3 6)=0
3 .6)=0
3 6)=0
3 .6)=0
3 6)=0

3 6)=0

3 .6)=0

00010 &END
00009 &END

00008 &END
000075 &END
00007 &END
000065 &END
00006 &END
00005 &END
00004 &END
00003 &END

Figure 4.1 Sample Turbomachinery Input File
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turbomachinery input file for NNEPEQis in the line defining the
characteristics of component6, repeated below.

KONFIG(I,6)=2,6,0,7,0,SPEC(I,6)=0.1,0,0.000145,6122.,I, 18300-,

This line appears to define the characteristics of a duct configured as a
burner. However, the third item in the SPEClist for a duct is listed as
unused by the NNEPEQmanual [3, p.6]. In this case, this variable has been
assigned to be an indicator of the presence of a diesel engine in the engine
configuration. If the value of this variable is zero, then thecomponent is
assumedto be a conventional burner. If the value is non-zero then the
component is assumedto be a diesel engine and the numerical value of this
variable corresponds to the specified value of fuel injected into each
cylinder per cycle ([b/cycle). Further, if the value of the third variable is
non-zero, then the value of the fourth variable, ordinarily assigned to be the
desired burner outlet temperature, becomesthe specified value of diesel
engine speed. Whenthe value of the third variable is non-zero, the
other variables in the SPECarray are not used.

Whendeveloping a data set for a new engine configuration, it is
suggested that the third variable be set equal to zero and estimated values of
the diesel engine pressure drop and exhaust temperature be assigned. This
will allow the turbomachinery portion of the program to be tested without the
added complication of the diesel program.

Figure 4.2 shows the form in which data must be entered for the diesel
data set. The data is read format-free but must be in the order shown. The
variables in the input data set are defined as shown in Table 4.2.

Table 4.2 Definitions of Variables in the Diesel Input File

TITLE = Title of run, up to 80 characters
NCYCLE= 2 if two stroke, = 4 if four stroke engine

NCYL= numberof cylinders
BORE= Cylinder bore. (inches)

STROKE= Stroke. (inches)
CONROD= Connecting rod length. (inches)

CR = Geometric compression ratio.
MODE= Piston-cylinder mode. (=i for conventional piston-cylinder

configuration, =2 for opposed piston configuration)
El = Shapeparameter for diffusion burning.
C2 = Crankangle for start of combustion.
C3 = Combustion duration parameter.
C4 = Premixed burning fraction.
C5 = Shapeparameter for premixed burning.

ANNND= Multiplier for Annandheat transfer correlation.
THEAD= Cylinder head temperature. (deg R)

TPISTN= Piston temperature. (deg R)
TSLEEV= Cylinder wall temperature. (deg R)

MEXH= Exhaust valve or port indicator. (=0 for exhaust ports
and =I for exhaust valves)

EVO= Exhaust valve or port opening crankangle. (degrees ATDC)
EVC= Exhaust valve or port closing crankangle. (degrees ATDC)

MINT = Intake valve or port indicator. (=0 for intake ports
and =i for intake valves)

13



TITLE

NCYCLE

BORE

C1

AI'.JN[,] D
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Figure 4.2 Format of Diesel Input File
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AVO= Intake Valve or port opening crankangle. (degrees ATDC)

AVC = Intake valve or port closing crankangle. (degrees ATDC)

NTEXH = Number of exhaust valve area versus crankangle data pairs

to be read in. (for MEXH=I only)

CDEXH = Exhaust valve or port discharge coefficient

ALPHEX(I) = Array of crankangles for exhaust valve flow areas. (deg ATDC)

FEXH(I) = Array of exhaust valve flow areas. (square inches)

WIDTHE = Fraction of the cylinder circumference devoted to exhaust port.

NTINT = Number of intake valve area versus crankangle data pairs

to be read in. (for MINT=I only)

CDINT = Intake valve or port discharge coefficient

ALPHIN(I) = Array of crankangles for intake valve flow areas. (deg ATDC)

FINT(I) = Array of intake valve flow areas. (square inches)

WIDTHI = Fraction of the cylinder circumference devoted to intake port.

When MEXH=I, exhaust vatves are being used and the used must specify

NTEXH, CDEXH and the arrays of crankangle versus flow area, ALPHEX(I) and

FEXH(I). When MEXH=0, exhaust ports are used and the user need only specify

WIDTHE and CDEXH. ALPHEX(I) and FEXH(I) are calculated internally. A

similar procedure is used when MINT=0. The case illustrated in Table I

corresponds to an engine that has exhaust valves and intake ports.
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5 Output from the Combined-Cycle Engine Simulation Program

The output from the combined-cycle engine simulation program consists of
two files. The first file characterizes the turbomachinery portion of the
engine and is called TURBO.OUTand the second file characterizes the diesel
engine and it is called DSL.OUT. The first file is identical to the output
file from NNEPEQ[2,3]. The input and output station properties of the
diesel engine are reported in this file as if the engine was a burner. This
file contains a listing of the properties such as mass flow rate, temperature,
pressure, fuel/air ratio, etc. at each flow station for the engine. Then the
output variables that are individually defined for each componentare
presented in a table. The table identifies these variables by their position
in the DAYOUTarray calculated by CCE. The definitions of the elements of
this array are provided in Table 5.1. Finally, the file includes a summaryof
the engine as a whole including air flow rate, fuel consumptio6, thrust, etc.

Table 5.1 Definition of the elements of the DATOUTarray

Device Type i: Inlet
DATOUT(1)=inlet drag
DATOUT(2)=velocity, ft/sec
DATOUT(3)=velocity, knots
DATOUT(4)=ramtemperature ratio
DATOUT(5)=rampressure ratio
DATOUT(6)=Machnumber
DATOUT(7)=Inlet recovery - exit total pressure/ram pressure
DATOUT(8)=exit temperature/518.67
DATOUT(9)=altitude, feet

Device Type 2: Duct or Diesel engine (Diesel engine output is provided
in a separate data file)

DATOUT(1)=Pressuredrop/inlet pressure from momentum
DATOUT(2)=Pressuredrop/inlet pressure from SPEC(I,N)
DATOUT(3)=Pressureratio at duct inlet used to compute inlet Mach

number (Total/Static)
DATOUT(4)=Fuelflow/duct inlet weight flow
DATOUT(5)=Crosssectional area - sq inches
DATOUT(6)=Fuelflow, Ib/hr
DATOUT(7)=Inlet Machnumber (if SPEC(2,N)or SPEC(7,N)were specified

at the design point)
DATOUT(8)=Burnerefficiency
DATOUT(9)=Burneroutlet temperature (before bypass added)

Device Type 3: Gas Generator
DATOUT(1)=Generatortemperature, deg R
DATOUT(2)=Assignedgenerator fuel/oxidizer ratio
DAYOUT(3)=Generatorpressure, psia
DATOUT(4)=Generatorfuel weight flow, Ib/sec
DATOUT(5)=Generatoroxidant weight flow, ib/sec
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DATOUT(6)=Totalgenerator weight flow, ib/hr
DATOUT(7)=Calculatedgenerator fuel/oxidizer ratio

Device Type 4: Compressor
DATOUT(1)=Horsepowerrequired (negative)
DATOUT(2)=PhysicalRPM
DATOUT(3)=Thirddimensional argument on compressor maps
DATOUT(4)=Rvalue used on maps
DATOUT(5)=Surgemargin in percent
DATOUT(6)=Correctedspeed used to read maps
DATOUT(7)=Scalefactor on corrected flow
DATOUT(8)=Compressorefficiency
DATOUT(9)=Compressorpressure ratio

Device Type 5: Turbine
DATOUT(1)=horsepowerproduced by turbine
DATOUT(2)=physical rpm
DATOUT(3)=Thirddimension argument value on turbine maps
DATOUT(4)=pressureratio used in table lookup
DATOUT(5)=scalefactor on corrected speed
DATOUT(g)=Correctedspeed used in table lookup
DATOUT(7)=scaiefactor on corrected flow
DATOUT(8)=turbine efficiency
DATOUT(9)=turbineoverall pressure ratio

Device Type 6: Heat Exchanger
DATOUT(1)=Pressuredrop/inlet pressure for main flow
DATOUT(2)=Pressuredrop/inlet pressure for secondary flow
DATOUT(3)=Blank
DATOUT(4)=Effectiveness
DATOUT(5)=Scalefactor on effectiveness
DATOUT(6)=Calculatedtemperature difference
DATOUT(7)=Temperaturedifference/(T hot - T cold)
DATOUT(8)=Temperaturerise difference (guess value/calculated - i)

Device Type 7: Splitter
DATOUT(1)=Bypassratio
DATOUT(2)=Pressuredrop/inlet pressure in primary flow stream
DATOUT(3)=Pressuredrop/inlet pressure in secondary flow stream

Device Type 8: Mixer
DATOUT(1)=Mainflow area - sq inches
DATOUT(2)=Secondaryflow area - sq inches
DATOUT(3)=Totalto static pressure ratio at main flow inlet
DATOUT(4)=Totalto static pressure ratio at secondary flow inlet
DATOUT(5)=Velocity at main flow inlet
DATOUT(6)=Velocity at secondary flow inlet
DATOUT(7)=Exitmixed flow velocity
DATOUT(8)=Static pressure difference between streams
DATOUT(9)=Totalmixed to average static pressure ratio

Device Type 9: Nozzle
DATOUT(1)=Grossjet thrust, Ib
DATOUT(2)=Actualjet velocity, ft/sec
DATOUT(3)=Totalto static pressure ratio at throat
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DATOUT(4)=Nozzleexit area, sq inches
DATOUT(5)=Nozzlethroat area, sq inches
DATOUT(6)=Cd,flow coefficient
DATOUT(7)=Cv,velocity coefficient
DATOUT(8)=Critical pressure ratio at throat
DATOUT(9)=Overall pressure ratio, inlet total to exit static

Device Type i0: Load
DATOUT(1)=Loadhorsepower (negative)
DATOUT(2)=Actual shaft rpm
DATOUT(3)=Propeller thrust

Device Type ii: Shaft
DATOUT(1)=Netshaft horsepower (required-delivered)
DATOUT(2)=Actual shaft rpm
DATOUT(3)=Actual shaft rpm of first component
DATOUT(4)=Actual shaft rpm of second component
DATOUT(5)=Actual shaft rpm of third component
DATOUT(6)=Actual shaft rpm of fourth component
DATOUT(7)=Blank
DATOUT(8)=Netshaft horsepower/total horsepower

Device Type 12: Control
There is no DATOUTarray for controls

The second output file shows the calculated results for the diesel
engine. It consists of two parts and is essentially identical to the output
file from DSL2 [i]. The first part is a summaryof the calculated quantities
that characterize the diesel engine's performance. The second part is a

listing of the cylinder pressure and temperature and other quantities at

10 degree intervals during the engine cycle. Both parts for the diesel

engine output listing are self-explanatory although the symbols are defined in

Table 5.2 below. The only difference between the diesel output file from CCE

and the output file from DSL2 is that DSL2 gives information about only a

single cylinder of a multi-cylinder engine while CCE gives information about

the entire engine.

Table 5.2 Symbols Used in Diesel Output File

IMEP = Indicated Mean Effective Pressure

BMEP = Brake Mean Effective Pressure

FMEP - Friction Mean Effec'tive Pressure

IHP = Indicated Horsepower

BHP = Brake Horsepower

FHP = Friction Horsepower

ISFC = Indicated Specific Fuel Consumption

BSFC = Brake Specific Fuel Consumption

EQUIVALENCE RATIO DURING COMPRESSION = This is the equivalence ratio

in the cylinder at the start of the compression process. It is

an indicator of the amount of residual gas left from the previous
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cycle.
EQUIVALENCERATIOAT EVO= This is the equivalence ratio in the cylinder

when the exhaust valve (or port) opens. It is an indicator of how
muchof the oxygen that entered the cylinder is still unused.

EQUIVLANCERATIOBASEDON FUELANDAIR FLOWRATES= This is the equivalence
ratio calculated from the fuel and air flow rates supplied to the
engine. In two-stroke engines it will generally be less than that
in the cylinder at EVOdue to the diluting effect of the extra air
supplied to scavenge the exhaust products from the cylinder.

CA = Crankangle
PCYL= Cylinder pressure
TCYL= Cylinder temperature

PHICYL= Equivalence ratio in the cylinder
MCYL= Total mass in the cylinder

MDOTIN= Mass flow rate into cylinder through intake valve (or port)
MDOTOUT= Mass flow rate out of cylinder through exhaust valve (or port)
BALANCE= Monitor on the overall cylinder energy balance. (Generally less

than 0.005)

19



6 SampleCases

6.1 Case NumberOne: V-6 Diesel Engine With Aftercooling

This case is derived from the combined-cycle engine proposed by Castor
of the Garrett Turbine Engine Company[7]. This engine assumesa 6-cylinder
diesel engine running at 6122 rpm coupled to turbomachinery that provides
supercharging air at 150 psia to the diesel as well as power recovery from the
exhaust. The overall engine power is designed to be 1000 hp. The engine
specifications are shownin the table below.

Table 6.1 V-6 Engine Specifications

Two-stroke, V-6 Diesel Engine, uniflow scavenged
Bore 3.10 inches
Stroke 2.94 inches
Compression ratio 9.17 (geometric)
At design point (14.7 psia, 519 deg R intake conditions)

Inlet manifold pressure
Inlet manifold temperature
Compressorefficiency
Turbine efficiencies
Exhaust opens
Exhaust closes
Intake opens
Intake closes

150 psia
896 deg R
0.79
0.845, 0.848
90 deg ATDC

239 deg ATDC
126 deg ATDC
234 deg ATDC

The block diagram shown in Figure 6.1 shows the combined-cycle engine
configuration used to model the engine. The numbers enclosed by circles
identify "flow stations" in the engine and the numbers and names in the
rectangles identify components. The design includes a low pressure fan to
supply air through a splitter to both the high pressure compressor and an
air-to-air aftercooler. The diesel engine receives air from the aftercooler
and discharges to a turbine that drives the fan and compressor. Exhaust
products pass from this turbine through a duct and into a power turbine. The
duct was included so that reheating of the exhaust products before entering
the power turbine could be investigated. However, this feature is not used
here.

The engine simulation program was adjusted to match the performance of
the engine proposed by Castor [7] at the design point. Then, with the diesel
speed held constant, the fuel flow rate was reduced to provide information
about part load performance. Figure 6.2 shows the turbomachinery input data
file used by CCE. The corresponding diesel input file is shown in Figure 6.3.

Table 6.2 shows a comparison between the performance characteristics

listed by Castor [7] and those provided by CCE.
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TEST CASE: COMBINED CYCLE ENGINE

&D ICEC=O ,NCODE=I ,LONG=T,NMODES=I ,

&D MODE=I ,

KONFI G(I ,I)=I ,i ,0

KONFI G(I ,2)=4,2,0

2.,0,.85,1.05,1,

KONFI G(I ,3)=7,3,0

KONFI G(I ,4)=4,4,0

0,0,.7_,9.9192,1,

KONFI G(I ,5)=g 12,

KONFIG(I,g)=2:6,0

FARRAY(I,g)=2 I

KONFI G(I ,7) =5

0 ,I , .845,5000

KONFI G(1,8)=2

FARRAY (i ,8)=2

KONFI G(I ,9) =5

0,i, .848,5000 I

KONFI G(I ,i0)=9,

Oe,l, ;

KONF IG( I

0° ,1, ,

KONFI G( i

KONFI G( i

KONFI G( !

KONFI G( I

KONFI G (I

KONFI G( i

KONF I G ( !
KONFI G( 1
KONFI G( 1

KONFI G( 1
KONFI G( 1
KONF I G ( 1
&END

,12)=9,

,13)=11
14)=11

15)=10

16)=12

17)=12

18)=12

20)=12

21)=12

22)=12

23)=12

24)=12

26)=12

7,0

i,

8,0
i

9,0

i0

&END

,2,0,SPEC(I,I)=7.8,4WO,I,5*O,0,O,

,3,0,8PEC(1,2)=1.8,0,I,I001,I,I002,1,I003,1,

,12,4,SPEC(I,3)=0.455,0,O,

,5,0,SPEC(1,4)=I.3,0,I,1004,.5,1005,1,I006,1,

5,13,6,SPEC(1,5)=.02,.02,250.,0.4,1,

,7,0,SPEC(I,6)=0.I,0,0.000145,g122.,I,18300.,

,8,0,SPEC(1,7)=4.3,0,I,I007,1,I008,1,I,

,9,0,8PEC(1,8)=0,0,0,0,.99,18300.,

,I0,0,SPEC(1,9)=1.8,0,I,I009,1,I010,I,I,

,0,II,0,SPEC(I,I0)=0.,I,0.,0.,.9850,I.,0.,

13,0,14,0,SPEC(1,12)=0,1,0,0.,0.9850,1.,I.,

,SPCNTL(I

SPCNTL(I

SF'CNTL(I

SPCNTL(I

SPCNTL(I

SPCNTL(!

SPCNTL(I

,2,4,7,0,SPEC(I,13)=gWl.

,9,15,0,0,SPEC(I,14)=9_I.

,O,O,O,O,SPEC(I,15)=-200,O,O,

16)=1,9,100,8,10,0,0,

17]!=1,7,100,8,9,0,0,

18)=1,4,100,8,7,0,0,

20)=1,2,100,8,4,0,0,

21)=1,1,100,8,2,0,0,

22)=1,13,200,8,13,0,0,

23)=1,15,200,8,14,0,0,

SPCNTL(I,24)=3,5,200,8,5,0,1,

SPCNTL(I,26)=IO,2,200,5,2,4.0,0,

&D SPEC(9,16)
SPEC(9,20)=I,
SPEC(9,26)=1,
&D SPEC_
&D SPECI
&D SPECq
&D SPECI

&D SPECI
&D SPECI
&D SPECI
&D SPECI
&D SPECI
&D SPECI

&D SPECI

3,6)=0

3,6)=0
3,6)=0
3,6)=0
3,6)=0
3,6)=0
3,6)=0
3,6)=0
3,6)=0

3,6)=0
3,6)=0

=I,SPEC(9,17)=I,SPEC(9,18)=I,

SPEC(9,21)=I,SPEC(9,22)=I,SPEC(9,23)=I,
&END

00012 &END
00010 &END
00009 &END

00008 &END
000075 &END
00007 &END
000065 &END
00006 &END
00005 &END

00004 &END
00003 &END

Figure 6.2 Turbomachinery Input Data File for Sample Case i
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TNCi-STR.OKE, '.J-6 ENGINE NITH
2 6

3.100 2,940 7.168 9.1712
1 3 345. _= 0 0 _ 5
0.55 1460. 1460. 1460.

i 90. 239. 0 126. 234.

13 0. 8864

90. O0 0. 0000

i00.97

115.00

121. gl

131.00

142._

162.89

180.95
194.00

201.5_9

209.00
222.23

239. O0

0,5542

0.1343

0. 5242

0. 8514

i. 2946

I. 5293

1 6924
i 6000

1 3291

1 0338

0 6638
0 2617

0 0000

0 8

UN IFL ON

i

SCAVENGING

Figure 6.3 Diesel Input Data File for Sample Case i
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Table 6.2 Combined-Cycle Engine Performance Comparison

Castor [7] CCE

Brake mean effective pressure (psi) 393

Brake power (diesel only) (HP) 810

Brake power (power turbine) (HP) 241

Brake power (total) (HP) 1051

Brake specific fuel consumption (ib/hp-hr) 0.328

Maximum cylinder pressure (psia) 3362

Air flow rate (ib/sec) 2.44

Turbine inlet temperature (deg R) 2214

Equivalence ratio 0.68

391.7

806.5

200.0

1006.5

0.317

3140.

2.44

2208.

0.674

The diesel output file for the design point case is shown in Figure 6.4 and

the turbomachinery output file is shown in Figure 6.5. The overall BSFC shown

in Table 6.2 is calculated from the power produced by both and diesel and

power turbine and the fuel consumed by the diesel. It is not calculated

within the program CCE.

The turbomachinery input file shown in Figure 6.2 specifies that the

program will evaluate the design point case as well as ii off-design cases.

Although performance may only be desired at a few off-design points, in

practice it is usually necessary to run the program at several intermediate

points. The program uses an iterative procedure to solve the turbomachinery

matching problem. The previous case conditions are used as initial estimates

for the next case. If the change in conditions from one case to the next is

too large, the program will be unable to converge. When this is a problem,

the solution is usually as simple as inserting several intermediate points

between the desired cases.

In this case, the part load, rated speed performance was investigated.

Table 6.3 shows the effect of reducing the amount of fuel injected on the

power split between the diesel engine and the power turbine as well as the

effect on the overall brake specific fuel consumption.

Table 6.3 Effect of fuel flow rate on Combined-Cycle Engine Performance

Fuel injected

per cylinder per cycle BMEP

(ib) (psi)

Brake Power Brake Power

(diesel) (turbine) BSFC

(He) (He) (Ib/hp-hr)

0.000145 391.7 806.5

0.00012 325.7 670.6

0.00010 271.1 558.2

0.00008 214.2 441.0

0.00006 156.2 321.5

0.00004 97.1 200.0

200 0

156 6

125 0

89 6

55 7

26 4

0.317

0.320

0.322

0.332

0.351

0.389
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TW0-STROKE, V-G ENGINE WITH UNIFLOW SCAVENGING

BORE

STROKE

CONNECTING ROD

GEOMETRIC COMPRESSION RATIO

EFFECTIVE COMPRESSION RATIO

NUMBER OF CYLINDERS

SWEPT VOLUME (TOTAL)

ENGINE SPEED

MEAN PISTON SPEED

SUPPLY AIR PRESSURE

SUPPLY AIR TEMPERATURE

EXHAUST PRESSURE

3.100 INCHES

2.940 INCHES

7.168 INCHES

9.17

7.50

6

133.141 CUBIC INCHES

6122. RPM

3000. F-r/MIN

150.00 PSIA

885.86 DEG R

133.74 PSIA

PORT TIMING: INTAKE OPEN 126.

INTAKE CLOSE 234.

EXHAUST OPEN 90.

EXHAUST CLOSE 239.

FUEL FLOW RATE

AIR FLOW RATE

0.0888 LBM/SEC
2.4384 LBM/SEC

FUEL INJECTED/CYCLE 0.000145 LBM/CYCLE

AIR INDUCTED/CYCLE 0.003983 LBM/CYCLE

IMEP 419.7 PSI

BMEP 391.7 PSI

FMEP 28.0 PSI

IHP 864.2 HP
BHP 806.5 HP

FHP 57.7 HP

ISFC

BSFC

0.3698 LBM/HP-HR

0.3962 LBM/HP-HR

INDICATED THERMAL EFFICIENCY

BRAKE THERMAL EFFICIENCY

0.3779
0.3527

MAXIMUM PRESSURE

MAXIMUM TEMPERATURE

MAXIMUM RATE OF PRESS RISE

3140.0 PSIA

4020.8 DEG R

60.50 PSI/DEG

PURITY

SCAVENGING EFFICIENCY

TRAPPING EFFICIENCY

CHARGING EFFICIENCY

DELIVERY RATIO

RESIDUAL FRACTION

0.8371
0.7759
0.7763
0.5268
0.6787

0.2366

AT 371.3 DEG
AT 390.0 DEG
AT 355.3 DEG

EQUIVALENCE RATIO DURING COMPRESSION

EQUIVALENCE RATIO AT EV0

EQUIVALENCE RATIO BASED ON FUEL AND

AIR FLOW RATES (EXHAUST) 0.5234

Z FUEL ENERGY TO HEAT LOSS
% FUEL ENERGY TO WORK

Z FUEL ENERGY TO EXHAUST

6.67 Z
37.79

55.54 Z

EXHAUST TEMPERATURE 2208.0 DEG R

Figure 6.4 Diesel Output File for Sample Case i
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CA
90.00

I00.00

110.00

120.00

126.00

130.00

140.00

150.00

160.00

170.00

175.17

180.00

180 O0

190 O0

200 O0

210 O0

220 00
230 O0

240 O0

250 O0

260.00

270.00

280.00

290.00
300.00

310.00

320.00

330.00

340.00
350.00

360 O0

370 O0

380 O0

390 O0

400 00

410 O0

420 O0
430 O0
440 O0

PCYL

545.3

458.6

377. i

292.8

241.0

205.7

142.8

137.0

138.7

140.3

141.0

142.9

142.9

144.9

146.8

149.3

150.4

153.9

166.5

186.2

213.1

250.2

302.2

376.5
484.8

645.6

886.0

1236.4
1698,9
2198.8

2785.0
3133,9
2935.8
2387.7
1810.2

1353.3
i030.0

807.7

653.8

TCYL
3047.8

2930.4
2803,5
2647.8
2534.3
2445.0

2206.3

1879.3

1641.3

1485.7

1427.9

1388.3

1388.3
1324.4
1282.8

1263.9
1263.9
1272.1
1299,2
1338,1

1386,2
1445.0
1516.5

1603.1

1707.4

1832.0

1978,0

2141.g

2307.1

2476,1

2904.7

3482.7
3898.6

4020.8
3918,3
3719.8
3512.9
3330.3
3176,9

PHICYL
0.6738

0.6738
0.6738
0.6738
0.6738
0.6738
0,6483

0.4754
0.3476
0.2682
0.2395
0.2186

0,2186
0.1869

0.1662
0.1553

0 1539
0 1539
0 1539
0 1539
0 1539
0 1539
0 1539
0 1539

0 1539
0 1539
0 1539
0 1539

0 1539
0 1610

0 2355
0 3746
0 5170

0.6125

0.65_5

0.6705

0,6736
0,6741
0.6741

MCYL

0.004199

0,004137
0.003929
0.003507
0.003145
0,001537
0,001459

O,OO1967
0.002667
0.003438
0.003842
0.004010

0.004011

0.004239
0.004360
0,004377
0,004239

0,004088
0.004051

0 004051

0 004051
0 004051

0 004051

0 004051
0 004051
0 004051

0 004051

0 004051

0 004051

0 004053
0 004073

0 004112

0 004152

0 004178

0 004191

0 004195

0 O04195

0 004196
0 004196

HDOTIN

0.000000
0.000000

0.000000
0.000000

0,000000
-0.000016

0.000031

0.000063
0.000075

0.00.0078
0.000078
0.000070
0,000070

0.000058

0.00004i

O.O0001g

-0 000006
-0 000006

0 000000

0 000000
0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0.000000

0.000000

0.000000

0.000000

MDOTOUT

0 000000
0 000013
0 000030
0 000055
0 000064
0 000063

0 000029
0 000019

0 000024

0 000028

0 000029

0 000040
0 000040
0 00O040

0 000034
0 000021

O.O000il

0.000005
0.000000

0.000000

0.000000

0.000000

0.000000
0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

BALANCE
0.00000

0.00000
0.00000
0.00000
0.00000
0.00000

0,00000

0 00000

-0,00003
-0 00001

-0 00002

0 00006

-0 00003
-0 00003
-0 000O4
-0 00005

-0 00004

-0 00004
-0 00005
-0 00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005

-0.00005
-0.000O4

-0.00004
-0.00005

-0.00004

-0.00004

-0.00004
-0.00004
-0.00004

-0.00005

Figure 6.4 - - continued
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The brake specific fuel consumption stays relatively constant down to about

65% of full power and then starts to increase. This can be attributed to the

influence of the power recovery from the exhaust turbine which tends to keep

the BSFC low even at part load.

6.2 Case Number Two: Opposed Piston 3-Cylinder Diesel Engine

This case is similar to the combined-cycle engine described in case

number I. The purpose of the engine and its design requirements are the same.

The diesel input data file, shown in Figure 6.6, is the same as for the V-6

engine except for the volume mode indicator that denotes an opposed piston

configuration. Also, the exhaust port width is specified instead of the

exhaust valve area profile. The turbomachinery input file shown in Figure 6.7

is the same as the earlier case except that the fuel injected per cylinder is

doubled to reflect the increased air flow provided per cylinder.

The design point output files are shown in Figures 6.8 and 6.9,

respectively. In general, the differences between the two engines are small.

There are almost no differences in the turbomachinery. The most significant

differences in the diesel engine are the peak pressure and the equivalence

ratio. The difference in peak pressure probably results from the difference

in effective compression ratio that occurs when the exhaust port of the

opposed piston engine closes 21 degrees later than the exhaust valve in the

V-6 engine. The difference in equivalence ratio is probably due to

differences in scavenging that also relate to changes in valve/port timing.

No attempt was made to optimize the port timing. Performance improvements

beyond that shown may be possible.
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TNO-::iTF:Ot<.E, OF;'O:-:;ED PISTrIN 3-1Z:rL ENGINE

2 3

3, lOEI 2,940 7,168 '3,1712 2

i ._ _-,4_ 65 0.0 3.5

O. 55 1460. 1460. 1460.

0 10 n 2 _-:I't 0 i -' = 2 :'::5

0 . 5542 rj . :g

0.5542 0. ',_::

Figure 6.6 Diesel Input Data File for Sample Case 2
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TEST CASE: COMBINEDCYCLEENGINE
&D I CEC=O ,NCODE=I , LONG=T,NMODES=I ,
&D MODE=I ,
KONFIG(I ,I)=i ,i ,

KONFIG(I ,2)=4,2,

2.,0,.85,1.05,1,

KONFI G( 1 , 3) =7,3,0 , 12,4, SPEC(1,3)=0.455,0,0 ,

KONFI G(1,4)=4,4,0,5,0 , SPEC(i ,4)=1.3,0,1,1004, .5,1005,1,1006,1 ,
0,0,.79,9.9192,1,

5)=g 12,5,13,g,SPEC(I,5)=.02,.02,250.,0.4,1,

6,0 7,0,SPEC(I,g)=O.I,O,O.OOO29,gI22,,I,18300.,g)=2

6)=2!

?)=5!
5000

8)=2 8,
8)=2 1

9)=5 9,

5000 i,

KONFI G( 1

KONFI G( 1

FARRAY ( I

KONFI G( 1

0,1, ,845

KONF IG( 1

FARP, AY (1

KONFI G( 1

0,i, ,848

KONFI G( i

0.,i.,
KONFI

0.,i.
KONF I

KONFI
KONFI

KONFI

KONF I

KONFI
KONFI
KONFI
KONFI
KONFI
KONFI

KONFI
&END

i

7,0

i,
0

10)=9,10

G(I,12)=9

G(I ,13) =Ii ,

I_3(1,14)=II

G(I,15)=IO

G(1,16)=12

G(I ,17)=12

G(1,18)=12

G(I ,20)=12

G(1,21)=12

G(I ,22)=12

G(I ,23) =12

G(I ,24)=12

G(1,26)=12

&END

0,2,0,SPEC(I,!)=7.8,4"0,1,5"0,0,0,

0,3,0,SPEC(1,2)=I.8,0,I,I001,1,1002,1,I003,1,

8,0,SPEC(1,7)=4.3,0,I,I007,1,I008,1,I,

9,0,8PEC(1,8)=0,0,0,0,.99,18300.,

I0,0,SPEC(1,9)=1.8,0,I,I009,1,1010,I,1,

0,II,0,8PEC(I,I0):0.,I,0.,0.,.9850,I.,0.,

,13,0,14,0,SPEC(I,12)=0,I,0,0.,0.9850,I.,I.,

2,4,7,0,SPEC(I,13)=9"I.

9,15,0,0,SPEC(I,14)=gWl.

O,O,O,O,SPEC(I

SPCNTL(I,Ig)=I

15)=-200,0,0,

9,100,8,10,0,0,

7,100,8,9,0,0

4,100,8,7,0,0

2,100,8,4,0,0

1,100,8,2,0,0

13,200,8,13,0

15,200,8,14,0

5,200,8,5,0,1

SPCNTL(I

SPCNTL(I

SPCNTL(I

SPCNTL(I

SPCNTL(I

SPCNTL(I

SPCNTL(I

0 ,

O,

17)=!

18)=1

20)=1

21)=1

22)=1

23)=i

24)=3

SPCNTL(1 26)=I0,2,200,5,2,4.0,0,

&D SPEC(9,1g)=I,SPEC(9,17)=I,SPEC(9,18)=I,
SPEC(9,20)=l,SPEC(9,21)=I,SPEC(9,22)=l,SPEC(9,23)=l,
SPEC(9,2g)=I, &END

3,6)=0.00024 &END
3,6)=0.00020 &END
3,6)=0.00018 &END

3,6)=0.00016 &END
3,6)=0.00014 &END
3,6)=0.00012 &END
3,6)=0.00010 &END
3,6)=0.00009 &END
3,6)=0.00008 &END

&D SPEC_
&D SPECI
&D SPECI

&O SPECI
&D SPEC_
&D SPECI
&D SPECt
&D SPECI

&D SPEC_
&D SPECl
&D SPECI

3,6)=0.00007 &END
3,6)=0.00006 &END

Figure 6.7 Turbomachinery Input Data File for Sample Case 2
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TWO-STROKE, OPPOSED PISTON 3-CYL ENGINE
BORE

STROKE

CONNECTING ROD

GEOMETRIC COMPRESSION RATIO

EFFECTIVE COMPRESSION RATIO

NUMBER OF CYLINDERS

SWEPT VOLUME (TOTAL)
ENGINE SPEED
MEAN PISTON SPEED

SUPPLY AIR PRESSURE

SUPPLY AIR TEMPERATURE
EXHAUST PRESSURE

3.100 INCHES
2.940 INCHES

7.168 INCHES
9.17
6.21

3

133.141 CUBIC INCHES
6122. RPM

3000. FT/HIN

150.00 PSIA

885.86 DEG R

129.66 PSIA

PORT TIMING: INTAKE OPEN 125.

INTAKE CLOSE 235.

EXHAUST OPEN i00.

EXHAUST CLOSE 260.

FUEL FLOW RATE

AIR FLOW RATE
0.0888 LBM/SEC
2.4390 LBM/SEC

FUEL INJECTED/CYCLE 0.000290 LBM/CYCLE
AIR INDUCTED/CYCLE 0.007968 LBM/CYCLE

IMEP 421.4 PSl

BMEP 393,4 PSI

FMEP 28.0 PSI

IHP 867.8 HP

BHP 810,i HP

FHP 57.7 HP

ISFC
BSFC

0.3683 LBM/HP-HR
0.3945 LBM/HP-HR

INDICATED THERMAL EFFICIENCY

BRAKE THERMAL EFFICIENCY
0.3795
0.3542

MAXIMUM PRESSURE

MAXIMUM TEMPERATURE

MAXIMUM RATE OF PRESS RISE

2679.4 PSIA
4662.5 DEG R

62.01 PSI/DEG

PURITY

SCAVENGING EFFICIENCY

TRAPPING EFFICIENCY

CHARGING EFFICIENCY

DELIVERY RATIO

RESIDUAL FRACTION

0 8287
0 8058
0 6096

0 4138
0 6788
0 1978

AT 374.5 DEG

AT 387.4 DEG
AT 359.4 DEG

EQUIVALENCE RATIO DURING COMPRESSION

EQUIVALENCE RATIO AT EVO

EQUIVALENCE RATIO BASED ON FUEL AND

AIR FLOW RATES (EXHAUST)

0.1620
0.8580

0. 5233

FUEL ENERGY TO HEAT LOSS
FUEL ENERGY TO WORK

% FUEL ENERGY TO EXHAUST

4.70 _,
37.95 ;/,
57.35 14,

EXHAUST TEMPERATURE 2187.3 DEG R

Figure 6.8 Diesel Output File for Sample Case 2
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CA
100.00
110 O0
120 O0
125 00
130 O0
140 O0
150 O0
160 O0
170 O0
180 O0

185.45

190. O0

190 O0

200 O0

210 O0

220 O0

230 O0

240 O0

250 00

260 O0

270 O0

280 O0

290 00
300 O0

310 O0

320 O0

330 00

340 00
350 O0

360 00
370 00

380 00
390 00
400 00
410.00

420.00
430,00
440,00
450,00

PCYL

405.4

325.2
230.3
188.2
153.4
129.7
130.1

130 .g
131.0

131,3

131.5

132.6
132.5

133,3
133,7
134.0
134.1

134.6

139.5

153.7

180,6

218.2

272.0

350.4

467.0

641.5

896,2

1233.0

1602.0

2152.1

2633.6
2569.9

2091 .8

1567.7

1164.8
886.5

696.6

565. i
472.2

TCYL
3378.9

3221.2
2990,1
2862.4

2737.5
2439.2
2138.4
1883.6

1694.0
1558.5

1502.3

1465,4
1465.5

1395.9

1344,6
1310.2

1292.2

1291.4

1304.1

1337.8

1395.1

1464 8

1549 4

1651 3

1773 2

1916 2

2077 0
2240 4

2413.7

2997,4

3890,5

4518.5

4658.4

4489.7

4237.9

4002.8
3802.9
3635.7
3496.6

PHI CYL
0 8580

0 8580
0 8580
0 8580

0 8580
0 7413
0 5741

0 4417
0 3485
0 2846
0 2587

0 2406

0 2407
0 2090

0 1862

0 1710

0 1630

0 1620

0 1620

0 1620

0 1620

0 1620

0.1620

0.1620

0.1620

0.1620

0.1620

0.1620

0,1698

0.2748

0. 4889

0. 6982

0.8140

0. 8510

0.8576

0. 8583

0,8584

0,8584

0.8584

0

0

0
0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

MCYL

.006350

.005904

.004890

.004325

.002139

.002454
,003134
.004036
.005084

,006199

,006808

.007010

.007010

.007278
,007371
,007286

,007014
006590
006230
006055

006055

006055

006055

006055

006055

006055

006055

006055

006058
006102

006191

006278

006327
006342
006345
006345

,006345
.006345
,006345

MDOTIN

0 000000

0 000000

0 000000
0 000000

-0 000005
0 000054
0 000080
0 000099

0 000109

0 000112

0 000111

0 000105

0 000105

0 000093

0 000074
0 000049
0 000018

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000
0 000000

0.000000

0.000000

0.000000

0.000000
0.000000

0.000000

0,000000
0.000000

0,000000
0,000000
0,000000

0.000000
0,000000

MDOTOUT

0.000000

0.000081

0.000113

0,000110

0.000085

0.000006
0.000018

0.000027

0.000035

0.000039
0.000041

0.000069

0.000069

0.000075

0.000073
0,000067
0.000054

0.000041

0.000030
0.000000

0,000000
0.000000

0.000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000

0 000000
o oooooo
0 000000

0 000000

0.000000

BALANCE

0.00000

0.00000
0.00000

-0.00003

-0.00003
-0.00003
-0 00004
-0 00001

0 00000

0 00009
0 00011

0 00026
0 00010

0 00010

0 00009

0 00009

0 00004
0 00004

0 00005

0 00005

0 00005

0 00005

0 00005

0 00005

0 00005

0 00004
0 00004

0 00004

0.00004
0.00007
0.00012

0.00010

0.00013
0.00012

0.00012

0.00012

0.00011

0.00011

0.00011

Figure 6.8 continued
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7 Conclusions

The computer program described in this report can simulate both design

point and off-design operation of a combined-cycle engine. It retains the

flexibility of the two original programs on which it is based. Widely varying

engine configurations can be evaluated for their power, performance and

efficiency as well as the influence of altitude and air speed. Although the

program was developed to simulate aircraft engines, it can be used with equal

success for stationary and automotive applications as well.

The program has been tested for a wide variety of engine configurations.

A student project is currently underway at Iowa State University to use the

program to simulate potential engines for a high-altitude, long-endurance

aircraft such as the Boeing Condor [8]. This is the type of application for

which the program was intended and it should provide useful information to

allow comparisons between engine configurations as well as for optimizing a

given engine design.
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9.2 Appendix B: SecondLaw Analysis

Second law analysis is a technique for analyzing thermodynamic systems
that goes beyond traditional energy balances based on the first law of
thermodynamics. Second law analysis uses the second law of thermodynamics to
determine the fraction of the energy stored or transported in a process that
could be converted to useful work. This type of analysis uses a property
called "availability."

Availability is the maximumtheoretical work output that could be
developed in bringing a system into equilibrium with a reference environment.
In general, this involves all work that could be obtained by exploiting
differences in velocity, potential energy, temperature, pressure, and
chemical potential between the system and the environment. Whenthermal,
mechanical, and chemical equilibria are attained and the system is at rest and
zero elevation relative to the reference environment, no further potential
exists for developing work. In this condition, the system and environment
combination is said to be at the dead state. The value of the availability
depends on both the state of the system and the state of the environment; it
is a measure of the system's thermodynamicpotential relative to the chosen
environment [9].

Availability is not a conserved quantity. It can be destroyed by
irreversibilities within the system such as friction, heat transfer, mixing,
turbulence, etc. However, it is possible to combine these terms into a single
loss term and write an availability balance for a system that is analogous to
the energy equation.

dAd__.O_ 7dV) _m}:sq'cl- V/ dA- (., _pO +  oo.-I
(9.1)

1 2 3 4 5

The numbered terms in this equation can be interpreted as availability

quantities as follows:

Term i: the rate of change of availability in the control volume

Term 2: the rate of availability transfer associated with heat transfer

from the gases to the wall

Term 3: net rate of availability transfer to the piston associated with

work

Term 4: rate of availability input to the control volume with the fuel,

including the availability input associated with flow work

Term 5: rate of availability destruction due to irreversibilities

within the control volume

Second law analysis consists of applying the availability balance to the

components of a system to determine whether the processes in that component

are destroying availability. This allows the individual processes within a

system that responsible for inefficiency to be identified.
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ComputerProgram ACV

A computer program, called ACV, has been written that performs a second
law analysis of a combined cycle engine. The program is interactive, and the
user enters information such as temperature, pressure, mass flow rate, etc.,
from the output files of the cycle simulation program, CCE. The output is
given in terms of the availability transferred due to heat transfer, work,
and mass flows as well as the availability destroyed by irreversibilities.

A sample output from the program is shown in Figure 9.1. This case
corresponds to the V-6 engine sample case discussed in Section 6.1. The
results can be summarizedas:

Availability input with air 1.68
Availability input with fuel 1796.26

Total availability added: 1797.94 Btu/sec

Work
Heat

Irreversibilites
Availability exiting with exhaust

Availability exiting with air

711.54
87.89

637.34
342.74

18.63

Total availability accounted for: 1798.14 Btu/sec

These results show that of the availability added to the combined-cycle
engine, 711.54/1797.94 = 39.6% is converted to work. This comparesto a first
law brake thermal efficiency of 44.0% based on the lower heating value of the

fuel. The analysis also shows that the most significant loss is the

irreversibility of the combustion process. 27.6% of the availability is

destroyed by the irreversible combustion process, 3.6% ks destroyed in the

heat exchanger and 19.1% exits with the exhaust gases.
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9.3 Appendix C: Use of Centrifugal Compressor Data in the Combined-

Cycle Engine Simulation

The computer program NNEPEQ is accompanied by a set of default compressor

and turbine maps that are scaled from a i00 ib/sec axial-flow compressor and

turbine. Since a i000 hp combined-cycle engine such as that discussed in

Section 6.1 is likely to use a 2 ib/sec centrifugal compressor, the effect of

using actual data for a compressor of this type was investigated. Skoch and

Moore [i0] collected experimental data on the performance of two i0 ib/sec

centrifugal compressors. The blade thickness of one of the compressors was

increased to simulate a scaled-up 2 ib/sec centrifugal compressor. While the

performance data for the simulated 2 ib/sec compressor would have been ideal,

only data for the thin-blade compressor were available. These data were used

to create the compressor map shown in Figure 9.2. When this map was used for

the high pressure compressor in a sample case of a combined-cycle engine, the

results shown in Table 9.1 were obtained.

Table 9.1 Comparison of Default Compressor Map and I0 Ib/sec Centrifugal

Compressor Map

Turbine Inlet Default

Temperature Compressor

(deg R)

Centrifugal

Compressor

HP Surge Mar Effic PR HP Surge Mar Effic PR

2300 454 30.2 78.9 i0.i 455 49.1 79.0 I0.i

2200 417 34.4 80.4 9.6 394 51.9 78.0 9.1

2100 377 37.1 81.6 8.9 344 54.9 77.9 8.3

2000 335 38.3 82.5 8.3 284 57.6 76.7 7.2

1900 286 37.2 82.6 7.4 232 59.7 76.0 6.3

1800 224 33.9 80.6 6.2 187 61.9 75.8 5.4

1700 170 31.6 79.0 5.2 134 63.3 74.6 4.4

1600 123 25.6 78.0 4.2 88 63.2 74.0 3.5

1500 78 9.1 77.0 3.3 56 60.6 75.7 2.8

As is clear from the table, the centrifugal compressor maintained a wider

surge margin and higher efficiency than the default compressor. The pressure

rise through the centrifugal compressor dropped off somewhat faster as the

turbine inlet temperature was decreased. Although not shown, a second series

of cases was also run with the "R" value of the centrifugal compressor

adjusted so that the initial surge margin of the default compressor and the

centrifugal compressor matched. In this case, the relationship between the

turbine inlet temperature and the compressor pressure ratio and efficiency was

altered somewhat but the performance was still below the default compressor.

This study makes it clear that while the default maps can be used for

comparisons between configurations, actual maps are required to obtain

accurate performance predictions. The default maps were used for the sample

cases discussed in Section 6.0.
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9.4 Appendix D: Subroutine for Simulating Opposed Piston Engines with

Crankshafts Out-of-Phase

A FORTRAN subroutine was developed for use with opposed piston engines

with out-of-phase crankshafts. The subroutine has been tested but was not

incorporated into the CCE simulation program. Since this type of engine is

very specialized, the added difficulty to the program user of having to input

additional engine specifications was considered undesirable. The subroutine

could be added with only minimal program modifications. The volume subroutine

listing, along with a simple test program, is provided in Figure 9.3.
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C

C

C

C

C

THIS IS A PROGRAM TO TEST THE VOLUHE SUBROUTINE FOR AN OPPOSED

PISTON ENGINE NITH CRANKSHAFTS OUT-OF-PHASE

COMHON/ENGINE/ CONROD,BORE,STROKE,CR,VCL,MODE,NCYCLE,LTYPE

COPU_ON/OPPSED/ PSI

SPECIFY VALUES OF INPUT VARIABLES

CONROD=9.

BORE=4.5

STROKE=4.5

CR=IG.

MODE=I

PSI=iO.

CALCULATE CLEARANCE VOLUME (REQUIRED BEFORE FIRST CALL TO

VOLUME SUBROUTINE)

CALL CLEAR

WRITE(5,*) "VCL = ",VCL

DO 20 I=1,21

CA=-10,+FLOAT(I-1)

CALL VOL2(CA,V,DVCA)

WRITE(G,*) CA,V,DVCA

20 CONTINUE

STOP

END

SUBROUTINE VOL2(CA,V,DVCA)

COMMON/ENGINE/ CONROD,BORE,STROKE,CR,D,VCL,MODE,NCYCLE,LTYPE
COMMON/OPPSED/ PSI

CALCULATE CYLII4DER VOLUME AND VOLUriE DERIVATIVE

DUMMYl=SQRT(CONRO[}**2-(STROKE/2.*SIbJ(CA/57.29578))**2)

DUNMY2=SQRT(CONROD**2-(STROKE/2.*SIN((CA+PSI)/57.29578))*_2)
XL=STROKE/2.*(i.-COS(CA/57.29578))+CONROD-DUHMY1

XR=STROKE/2.*(1.-COS((CA+PSI)/57.2_578))+CONROD-DUMMY2

V=VCL+O.7853982*BORE_BORE_(XL+XR)

DXLDT=STROKE/E.*SIN(CA/57.29578)*

1 (1.+STROKE/2.*COS(CA/57.29578)/DUIdHY1)

DXRDT=STROKE/2.*SIN((CA+PSI)/57.2£578)*

1 (1.+STROKE/2.*COS((CA+PSI)/57.29578)/DUMMY2)

DUCA=O.7853982*BOREWBORE*(DXLDT+DXRDT)/57.29578

RETURN

END

SUBROUTINE CLEAR

COHHON/ENGIhIE/ CONROD,BORE,STROKE,CR,VCL,MODE,NCYCLE,LTYPE

COMMON/OPPSED/ PSI

CALCULATE CYLINDR CLEARANCE VOLUME

CA=-PSI/2.

DUMIfYl=SQRT(CONROD*_2-(STROKE/2.*SIN(CA/57.29578))**2)

DUHHY2=SQRT(CONROD**2-(STROKE/2.*SIN((CA+PSI)/57.29578))*_2)

XL=STROKE/2.*(1.-COS(CA/57.29578))+CONROD-DUMP_l

XR=STROKE/2.*(1.-COS((CA+PSI)/57.29578))+CONROD-DUMMY2

UMIN=O.7853982*BORE*BORE*(XL+XR)

CA=CA+IBO.

DUMMYi=SQRT(CONROD**2-(STROKE/2.*SIN(CA/57.2_578))**2)
DUMMY2=SQRT(CONROD**2-(STROKE/2.*SIN((CA+PSI)/57.29578))**2)

XL=STROKE/2.*(1.-COS(CA/57.29578))+CONROD-DUMMY1

XR=STROKE/2.*(1.-COS((CA+PSI)/57.29578))+CONROD-DUHHY2

VMAX=O.7853982*BORE*BORE*(XL+XR)
VCL=(VMAX-CR*VMIN)/(CR-1.)

RETURN

END

Figure 9.3 Cylinder Volume Subroutine for an Opposed Piston Engine
with Out-of-Phase Crankshafts
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